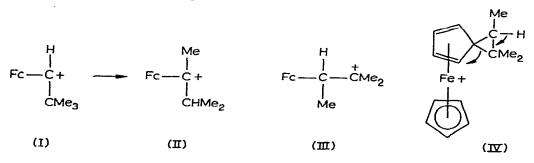
Preliminary communication

Double-shift rearrangements of secondary ferrocenylcarbonium ions


T.D. TURBITT and W.E. WATTS

School of Physical Sciences, New University of Ulster, Coleraine (Northern Ireland) (Received July 4th, 1973)

SUMMARY

In CF_3CO_2H solution, secondary ferrocenylcarbonium ions ($FcCHCR^1R^2R^3$) undergo a quantitative double-shift rearrangement to generate isomeric tertiary carbonium ions ($FcCR^1CHR^2R^3$).

Ferrocenylcarbonium ions (FcCRR') are generated quantitatively when the corresponding alcohols (FcCRR'OH) are dissolved in CF_3CO_2H and give characteristic, readily interpretable ¹H NMR spectra in this solvent¹. By monitoring changes with time in the spectrum, we have found that the secondary carbonium ion (I), generated from the alcohol² $FcCH(OH)CMe_3$, rearranges cleanly and quantitatively (ca. 2 h at 70°) to the isomeric tertiary carbonium ion (II). For comparison, the latter cation was independently prepared from the alcohol² $FcCMe(OH)CHMe_2$ in CF_3CO_2H . Signals attributable to intermediates in the rearrangement process were not detected.

The driving force for the rearrangement (I) \rightarrow (II) can be attributed to the greater thermodynamic stability of the tertiary cation³. Although the mechanism of the process could involve sequential methyl and hydrogen shifts^{*}, the β -ferrocenylalkyl cation inter-

^{*}Study of the rearrangement in CF_3CO_2D has established that the hydrogen shift occurs by an intraionic mechanism; H/D exchange of the migrating hydrogen atom was not observed.

mediate (III) would be thermodynamically much less stable⁴ than the α -ferrocenylalkyl precursor (I). Perhaps more plausibly, the initial methyl migration may proceed synchronously with formation of a short-lived *spiro*-diene intermediate (IV) whose three-membered ring may reopen with concomitant hydrogen migration to generate the observed product (II) as indicated. *Spiro*-cyclic cations such as (IV) may be regarded as the ferrocene analogues of phenonium ions and the stereochemical course of the rearrangement sequence $(I) \rightarrow (IV) \rightarrow (II)$ may be subject to orbital-symmetry control. We plan to investigate this possibility using an optically active form⁵ of the precursor (I).

$$\begin{array}{cccc} H & Me & Ph \\ I & I \\ Fc-C+ \rightarrow Fc-C+ & + Fc-C+ \\ I \\ MeCPh_2 & CHPh_2 & MeCHPh \\ (V) & (VI) & (VII) \end{array}$$

We have observed similar double-shift rearrangements of other secondary ferrocenylcarbonium ions^{*}. For example, the cation (V) rearranges readily in CF_3CO_2H giving a mixture of isomeric tertiary cations. The major product (VI) results from interchange of methyl and hydrogen. The minor product (VII), resulting from phenyl/hydrogen interchange, exists in diastereoisomeric forms (the FcCRR' system is itself chiral⁵) and we have independently shown that these diastereoisomers (each a racemate) interconvert in solution by rotation around the bond exocyclic to the ferrocenyl group. We have found, however, that other secondary cations (*e.g.* FcCHCHMe₂ and FcCHCH₂CMe₃) are unchanged after several hours at 70° in CF_3CO_2H .

REFERENCES

4 Cf., M.J. Nugent, R.E. Carter and J.H. Richards, J. Amer. Chem. Soc., 91 (1969) 6145

¹ Cf., T.D. Turbitt and W.E. Watts, J. Chem. Soc. Chem. Commun., (1972) 947

² F.H. Hon and T.T. Tidwell, J. Org. Chem., 37 (1972) 1782

³ E.A. Hill and R. Wiesner, J. Amer. Chem. Soc., 91 (1969) 509

⁵ Cf., T.D. Turbitt and W.E. Watts, J. Chem. Soc. Chem. Commun., (1973) 182

^{*}Some rearrangements reported by Hon and Tidwell² may proceed by a similar carbonium ion mechanism.